Самостоятельное восстановление жесткого диска
Современные технологии развиваются большими темпами, оборудование устаревает и заменяется новым, прогресс диктует нам с вами свои условия. В одной из предыдущих статей, Убираем тормоза и зависания видео на YouTube, мы говорили о том, как можно бороться с такими проблемами, а именно, как обеспечить комфортный сёрфинг в интернете при использовании устаревшего оборудования . Но порой случается так, что моральный запас прочности у железа ещё есть, а вот его физический износ вынуждает обновлять имеющиеся мощности. И если выход из строя видеокарты или оперативной памяти предполагает только дополнительные финансовые затраты, то поломка жесткого диска, зачастую, отнимает у нас ещё и важную, ценную информацию, хранившуюся на нём. Конкретно о способах восстановления данных с испорченного жесткого диска и пойдёт речь ниже. Поговорим о том, как восстановить жесткий диск самостоятельно при его поломке.
Содержание статьи:
Восстановление данных с жесткого диска после форматирования
Отметим сразу, что темой данной статьи являются не программные способы восстановления жесткого диска . Это отдельный большой раздел в мире IT, который широко раскрыт на просторах сети интернет. Хотя, в большинстве случаев, восстановление данных с жесткого диска после форматирования в домашних условиях сводится к запуску одной из множества специализированных программ recovery, нажатию нескольких кнопок и ожиданию завершения долго процесса извлечения утраченных файлов.
Среди всех факторов успешности проведения подобной процедуры можно отметить:
- Способ удаления пользовательских данных
- Отсутствие повторных записей поверх утраченных данных на секторах жесткого диска
- Оптимально подобранное программное обеспечение восстановления данных для конкретного случая
Чаще всего какой-то процент потерянной информации удаётся спасти.
Но что, если ваш жёсткий диск вообще не определяется системой? Или при подключении накопителя к компьютеру он издаёт хрустящие, иногда свистящие, звуки и не отображается ни в проводнике Windows, ни в утилите управления дисками? В таком случае, очевидно, неисправность вашего HDD носит железный характер. Самостоятельное исправление подобных проблем требует более активного участия со стороны пользователя.
Весь приведённый в данной статье материал касается ремонта неисправностей жёстких дисков HDD. Твёрдотельные SSD накопители, настройка системы под которые была описана в статье SSD твёрдотельные накопители. Настройка Windows под SSD накопитель, требуют отдельного подхода и ниже рассмотрены не будут.
Очистка контактов платы жесткого диска от окислений
Если при подключении к компьютеру накопителя он не подаёт абсолютно никаких признаков жизни , не издаёт никаких звуков , не появляется лёгкой вибрации от раскручивания пластин (то есть самих дисков) внутри корпуса HDD, при этом в Проводнике Windows не виден жесткий диск, то, скорее всего, отсутствует напряжение на контактах мотора накопителя. Одной из самых распространённых причин отсутствия питания на жёстком диске является окисление контактов платы HDD.
Этот раздел мы рассмотрим на примере sata жёсткого диска Seagate Barracuda 7200.12 ёмкостью 500 Gb
После подключения к компьютеру жёсткого диска он не отображается ни в Проводнике , ни в Управлении дисками , ни в Диспетчере устройств Windows. Перевернём диск и взглянем на его печатную плату
При детальном осмотре внешней части платы становится видно, что её контакты сильно окислены (на фото крупные окисления выделены красным). Это является веской причиной, чтобы взглянуть на обратную сторону печатной платы.
Аккуратно отвёрткой-звёздочкой откручиваем болтики крепления платы к корпусу жёсткого диска и отсоединяем её.
Здесь мы предсказуемо видим также существенное окисление на контактах, в том числе и на контактах моторчика HDD-накопителя. Это явление и может служить причиной отсутствия напряжения на моторе жёсткого диска.
Кроме того, следы окисления теперь видны с обеих сторон вокруг отверстий для крепления печатной платы к корпусу диска, что также является недопустимым
Так чем очистить окисления на плате ? Существуют разные способы и средства. Мы для очистки печатной платы жесткого диска от окислений будем использовать обычную стирательную резинку, всем известную как ластик или стёрка.
Берём ластик и аккуратно начинаем «стирать» с платы HDD следы окислений, там где их обнаружим.
Не надо прилагать излишних усилий, это может повредить плату или её электронные элементы!
После проделывания всей процедуры можно оценить результат
Результат не идеальный, но и этого будет достаточно.
Теперь неплохо было бы обработать контакты платы каким-нибудь средством от окислений и собрать наш жёсткий диск.
В данном конкретном случае проделанная процедура принесла результаты. После подключения к компьютеру жёсткий диск определился системой, разделы жёсткого диска появились в файловом менеджере и HDD-накопитель продолжил работу в штатном режиме.
Пайка электронных элементов платы жёсткого диска
В примере выше процедура восстановления работоспособности HDD ограничилась очисткой окислов с контактов платы, но так бывает не всегда. Случается, что попросту выходят из строя электронные элементы платы жёсткого диска. В этом случае неисправные компоненты нужно заменить на аналогичные.
Современные жёсткие диски нельзя восстановить простой заменой печатной платы на схожую. Чипы устройств снабжены защитой от подобных вмешательств в оборудование! Процесс замены платы имеет свои нюансы и должен рассматриваться отдельно.
Человеку, разбирающемуся в электронике и умеющему обращаться с паяльником и мультиметром, не составит большого труда выявить «слабое звено» в цепи.
Чаще всего страдают защитные диоды схемы. Для проверки их можно вовсе выпаять с платы, жёсткий диск должен работать и без них, однако это опасно для устройство, так как оно становится уязвимым к любым перепадам напряжения в сети. Исключением являются SMD предохранители , отсутствие которых на плате приравнивается к их неисправности. То есть без них винчестер работать не будет.
Более серьёзным ремонтом является замена сгоревшей smooth микросхемы . Другие названия: микросхема предусиления, микросхема коммутации, крутилка (так называют данную микросхему, потому что именно она отвечает за вращение шпинделя и работу шпиндельного моторчика).
Чаще всего диагностировать неисправность данного контроллера можно без дополнительных устройств по сильному запаху плавления платы и внешней деформации самого чипа микросхемы.
Ремонт внутренностей жёсткого диска. Парковка головки
Но не всегда причиной неисправности винчестера является проблемная плата и её элементы. Иногда бывает, что при подаче питания жёсткий диск издаёт скрежет, свист или другие нетипичные для этого устройства звуки. При этом тоже жесткий диск не отображается в Проводнике операционной системы. Если вы столкнулись с подобной проблемой, то, вероятно, читающая головка вашего жёсткого диска не встала на парковочное место.
Нам в руки попал 2.5′ ‘ жёсткий диск от ноутбука с подобными симптомами. Модель жёсткого диска Western Digital Scorpio Blue 320 GB (WD3200BPVT).
Чтобы начать ремонт HDD, взглянем на схематичное изображение внутреннего устройства жёсткого диска
В активном состоянии головка жёсткого диска, управляемая коромыслом, находится непосредственно над магнитным диском устройства, считывая с него информацию. Однако, когда компьютер выключается (либо устройство извлекается из ПК, в случае, если речь идёт про внешний жесткий диск ), коромысло паркует головку на специально отведённое для этого парковочное место. Парковочное место считывающей головки обычно находится либо у внешнего края диска, либо непосредственно у шпинделя.
Вскроем наш жёсткий диск и посмотрим, всё ли там в порядке.
Отвёрткой звёздочкой откручиваем все болтики крепления верхней крышки к корпусу. Некоторые болтики спрятаны под круглыми блестящими наклейками, некоторые располагаются под основной большой наклейкой.
Отклеивая наклейки от крышки жёсткого диска будьте аккуратны, эти элементы изготавливаются из фольгированного алюминия и могут быть очень острыми!
После вскрытия корпуса перед нами предстала следующая картина
Как вы видите, наши предположения оказались верными, головка жёсткого диска располагается вне парковочного места с краю от магнитных блинов. Нам необходимо это исправить. Чтобы припарковать считывающую головку жёсткого диска , нужно потихоньку прокрутить шпиндель (центральная область диска) по часовой стрелке, НЕ КАСАЯСЬ при этом зеркальной поверхности дисков!
В итоге у нас должно получиться нечто подобное
Теперь собираем корпус жёсткого диска, стараясь избежать попадания пыли на его внутренности.
Подключаем накопитель к компьютеру и проверяем. У нас появился раздел жесткого диска в Проводнике. Необходимые данные были незамедлительно перенесены на исправное устройство хранения данных.
На этом всё. Выше мы рассмотрели основные доступные способы самостоятельного восстановления жёсткого диска. Будьте аккуратны и у вас всё получится.
МИР ПЕРИФЕРИЙНЫХ УСТРОЙСТВ ПК
Головки чтения/записи накопителей HDD.Часть первая.
Плотность записи накопителей на жестких дисках (HDD) в первую очередь определяется размером и конструкцией головок чтения/записи. Именно в направлении развития и совершенствования головок очень долгое время работала вся отрасль «жестких дисков». Результатом долгой, кропотливой и «умной» работы инженеров стал целый ряд новейших разработок своего времени. Каждый новый тип головки чтения/записи становился поворотным моментом в развитии накопителей и проводил к увеличению плотности записи и емкости дисков на порядок, а иногда и на несколько порядков. Знание важнейших этапов развития жестких дисков является неотъемлемой чертой хорошего специалиста по ремонту дисков и восстановлению информации.
Практически в любой публикации по устройству накопителей HDD, которыми пестрит Internet, мы сможем найти поверхностный обзор головок чтения/записи. Однако тема головок чтения/записи на самом деле гораздо шире и занимательнее, чем это можно представить себе, читая отрывочные и бессистемные заметки на данную тему. Кроме того, бросается в глаза то, что во всех Internet-публикациях классификация головок практически одна и та же, причем эта классификация явно страдает неполнотой представленной информации. В реальности же, типов головок чтения/записи гораздо больше, чем это принято считать в рунете, и поэтому, как нам кажется, разговор на данную тему вполне буде актуальным.
Итак, не откладывая в долгий ящик, приступим к обзору головок чтения/записи накопителей HDD, в котором в той или иной степени буду затронуты следующие их типы:
1. Ферритовые головки чтения-записи (FH)
2. Головки чтения-записи с металлом в зазоре (MIG)
3. Тонкопленочные головки чтения-записи (TF)
4. Магниторезистивные головки чтения (MR)
5. Гигантские магниторезистивные головки чтения (GMR), они же SPIN-VALVE головки (SV GMR)
6. GMR-головки чтения для продольной записи (GMR CIP)
7. GMR-головки чтения для перпендикулярной записи (GMR CPP)
8. Зеркальные GMR головки чтения
9. Двойные зеркальные GMR-головки чтения
10. Туннельные ферромагнитные головки чтения (MTJ)
11. Колоссальные магниторезистивные головки чтения (CMR)
12. Туннельные магниторезистивные головки чтения (TMR)
13. Головки для магнитной записи с помощью нагрева (HAMR-головки)
Так как в рамках одной статьи рассмотреть все эти технологии даже поверхностно является достаточно трудной задачей, то данный обзор мы разбили на несколько частей, которые будут публиковаться в нескольких номерах нашего журнала.
Ферритовые головки
Ферритовые головки были самыми первыми головками чтения/записи, использовавшимися фирмой IBM в накопителях типа «винчестер». Эти головки имеют самую простую конструкцию и самый простой принцип работы. Сердечник головки выполнен из прессованного феррита, изготовленного на основе окиси железа, и имеет U-образную форму. Вокруг этого сердечника наматывается обмотка, в которой и создается ток записи или чтения. Фактически, ферритовая головка представляет собой классический электромагнит очень малых размеров. Таким образом, на концах U-образного магнита формируются магнитные полюса (южный и северный), создающие магнитное поле. При этом направление силовых линий данного магнитного поля определяется направлением тока в обмотке головки. Сердечник головки состоит из двух половинок, между которыми имеется зазор (рис.1).
При выполнении операции записи на диск, электрический ток, протекающий через обмотку головки, создает магнитное поле в зазоре между полюсами сердечника (рис.2), в результате чего и происходит намагничивание поверхности дискового накопителя. Смена направления тока в обмотке головки приводит к изменению полярности магнитного поля, а, соответственно, и к изменению направления намагничивающей силы (рис.2-a и рис.2-б).
При чтении же, наоборот, намагниченная область диска, «пролетая» под головкой, создает в U-образном сердечнике изменяющееся магнитное поле, что, в свою очередь, приводит к появлению в обмотке электрического тока. Направление тока в обмотке зависит от полярности намагниченной области диска (рис.3).
Таким образом, ферритовая головка является универсальной, т.е. может использоваться как для записи, так и для чтения информации с диска.
Ферритовые головки имели значительные габариты и были довольно громоздкими, в результате чего их размещали на достаточно большом расстоянии от дисковой поверхности. Это обстоятельство, в свою очередь, приводило к необходимости увеличивать массу и габариты магнитных доменов диска для того, чтобы они могли обеспечить значительную напряженность магнитного поля. Таким образом, с помощью ферритовых головок невозможно добиться высокой плотности записи, и их применение ограничивалось дисками, емкостью до 50 Мбайт.
Устройство ферритовой головки чтения-записи и ее внешний вид показаны на рис.4. На этой фотографии очень хорошо виден ползунок (слайдер), который к головке чтения-записи прямого отношения не имеет, а предназначен для того, чтобы задавать необходимое расстояние между головкой и поверхностью диска. Слайдер позволяет головке «порхать» над поверхностью диска на заданной высоте. Конструкция, габариты и другие параметры слайдера имеют очень большое значение, но об этом чуть позже.
Вскоре ферритовые головки были усовершенствованы путем помещения сердечника в керамический корпус, что позволило увеличить плотность записи. Такие головки широко использовались в накопителях до середины 80-х годов. Ферритовые головки непригодны для записи на носители с большой коэрцитивной силой.
MIG-головки
MIG — Metal-In-Gap (метал в зазоре) – это композитные головки, в которых нерабочий (обратный поверхности диска) зазор заполнен металлом (рис.5).
Такая конструкция позволяет значительно уменьшать магнитное насыщение сердечника головки. Благодаря заполнению заднего технологического зазора, склонность материала сердечника к магнитному насыщению уменьшается, что позволяет увеличить магнитную индукцию (индукция насыщения магнитного сплава вдвое выше, чем самого ферритового сердечника головки) и записывать данные с большей плотностью за счет увеличения коэрцитивной силы. Технология MIG позволяет увеличить магнитную индукцию в зазоре между головкой и диском. MIG-головки формируют на поверхности диска намагниченные участки с более выраженными границами намагниченных зон, что позволяет использовать более тонкий магнитный слой. Сердечник MIG-головок имеет значительно меньшие размеры, по сравнению с сердечниками ферритовых головок, что приводит к уменьшению их массы, а, следовательно, и к уменьшению зазора между головкой и поверхностью диска. Один из вариантов конструкции MIG-головки показан на рис.6.
Существовала также разновидность MIG-головок с напылением магнитного сплава и в рабочий зазор – так называемые, двухслойные MIG-головки. Такой подход позволял улучшить характеристики головок.
Так как MIG-головки, являются разновидностью ферритовых головок, то они являются универсальными головками чтения-записи.
Конструкция MIG-головок позволяла производить дисковые накопители с емкостью от 50 до 100 Мбайт.
Тонкопленочные головки
Первые тонкопленочные (Think Film – TF) головки получили практическое применение в 1979 году, хотя их конструкция разрабатывалась с 1960 года. В литературе можно встретить еще и такое название этих головок, как тонкопленочные индуктивные головки –Thin Film Inductive (TFI). Производились тонкопленочные головки путем фотолитографии, т.е. так же как и интегральные микросхемы. Данная технология производства позволяет резко уменьшить размер и массу головок.
Сердечник тонкопленочной головки получается следующим образом. На подложку головки по специальному шаблону наносится очень тонкий слой проводящего материала – железоникелевого сплава, величина индукции насыщения которого в 2-4 раза больше, чем у пермаллоя (ферромагнитного сплава). В результате, сердечник, на который наматывается обмотка, получается очень компактным. Малый вес и малые габариты TF-головок позволяют до 0,03 мкм уменьшить просвет между поверхностью диска и головкой. Небольшая высота TF-головок способствует тому, что в накопителе удается разместить большее количество магнитных дисков, без увеличения его высоты. Эти головки также имели хорошую остаточную намагниченность участков поверхности носителя.
Конструкция TF-головок позволяет изменять зазор между головкой и диском путем наращивания слоев алюминиевого сплава на рабочую поверхность головки. Уменьшение зазора дает увеличение остаточной намагниченности и повышается отношение «сигнал—шум», так как увеличивается амплитуда сигнала. Кроме этого, алюминиевый сплав предотвращает повреждения головки о поверхность диска. Большим преимуществом TF-головок является уменьшение магнитных доменов на дисковой поверхности, что позволяет увеличить плотность записи.
Временем «расцвета» технологии TF-головок можно считать конец восьмидесятых – середина девяностых годов 20 века. С использованием тонкопленочных головок производились накопители емкостью от 100 МБ до нескольких Гбайт.
Пример тонкопленочной головки чтения-записи представлен на рис.7.
Магниторезистивные головки
Во-первых, сразу стоит оговориться, что магниторезистивный эффект используется только для построения головки чтения. Таким образом, магниторезистивные головки, в отличие от рассмотренных выше типов головок, состоят уже из двух частей:
Модель такой разделенной по функциям головки чтения/записи демонстрируется на рис.8, где очень хорошо видно, что запись и чтение осуществляется разными элементами головками. (Головки записи на рис.8 показана для простоты понимания в виде индуктивной ферритовой головки, хотя на самом деле она является тонкопленочной).
Впоследствии тонкопленочная головка записи во многих накопителях была несколько модернизирована и приобрела такой вид, как это показано на рис.9.
Высокая чувствительность MR-головки чтения требует обязательного наличия экранирующих элементов, предотвращающих воздействие на головку внешних магнитных полей.
Свою историю магниторезистивные головки (Magnitoresitive – MR) начинают с начала 90-х. Первые поколения этих головок являлись анизотропными магниторезистивными головками (Anisotropic Magnitoresistive – AMR), и именно термином AMR обозначали их в различной документации. Позже данный тип головок стали обозначать просто MR, но сейчас в некоторых случаях возникает путаница, связанная с тем, что термином MR называют иногда и следующее поколение головок GMR. Именно поэтому в современных публикациях зачастую опять возвращаются к термину AMR для обозначения магниторезистивных головок. Фотография магниторезистивной головки демонстрируется на рис.10.
Рис.10
Применение магниторезистивных головок позволяет добиться чрезвычайно высокой плотности записи данных и высокого быстродействия накопителя. Принцип работы головки основан на том, что при считывании данных реактивное сопротивление обмотки MR-головки оказывается различным при прохождении над участками с разными значениями остаточной намагниченности. Таким образом, магниторезистивная головка регистрирует не на изменения намагниченности (как это было в головках рассмотренных выше), а на величину намагниченности рабочего слоя диска.
В составе магниторезистивной головки чтения имеется добавочная обмотка, в которой создается постоянный измерительный ток. В момент, когда головка проходит над зоной намагниченности, сопротивление этой обмотки изменяется, а соответственно изменяется величина измерительного тока. Контролируя величину этого тока, управляющая схема регистрирует наличие полезного сигнала на выходе головки чтения. Амплитуда выходного сигнала MR-головки в несколько раз больше, чем тонкопленочной. Фактически, главным отличием MR-головки является то, что она представляет собой резистивный датчик магнитного поля, а не генератор электродвижущей силы, как описанные ранее головки.
В ферритовых, MIG и TF головках рабочий зазор между головкой и поверхностью накопителя один – и для операций записи и для операций чтения – и это логично, ведь данные головки одновременно являются и головками чтения, и головками записи. А вот в MR-головке рабочих зазоров два – каждый для своей операции (рис.11). В MR-головках у считывающего узла зазор должен быть меньшим (для увеличения разрешающей способности), а у записывающего – более широким (для более глубокого проникновения магнитного потока в рабочий слой носителя). Поэтому записывающая головка создает более широкие дорожки, чем это необходимо для считывающей MR-головки. Таким образом, при считывании не захватываются шумы с соседних дорожек, что, несомненно, повышает привлекательность использования MR-головок в накопителях.
Рис.11
Кроме того, стоит отметить, что между головками чтения и записи и поверхностью диска также получаются разные зазоры. Головка чтения оказывается на большем расстоянии от поверхности диска, чем головка записи, поэтому чувствительность MR-сенсора имеет весьма большое значение для уверенного приемам сигнала от магнитного домена. Разность зазоров чтения и записи обусловлена наклонным положением слайдера головки (рис.12).
Рис.12
Представление о реальном устройстве магниторезистивной головки и ее положении относительно магнитного носителя информации (дорожек на диске) дает рис.13.
Рис.13
Магниторезистивная головка имеет сложную, многослойную структуру (рис.14), а основой головки является железо-никелевый сплав (NiFe), который и является датчиком магнитного поля, на выходе которого формируется электрический сигнал при прохождении под головкой намагниченного участка (рис.15).
Рис.14
В железо-никелевом сенсоре течет постоянный ток, но в момент прохождения под головкой магнитного домена, магнитное поле искажает траекторию электронов сенсора, что приводит к изменению сопротивления железо-никелевой пластины. В результате, величина тока в магнитном сенсоре возрастает, или, наоборот, уменьшается, в зависимости от направления магнитного поля.
Рис.15
MR-головки используются в большинстве накопителей емкость от 1 Гбайт до 30 Гбайт.
Неисправность блока магнитных головок
Самой частой физической неисправностью современных жестких дисков является выход из строя блока магнитных головок (неисправность БМГ).
Причиной может быть падение диска, удар по нему, тряска при работе (это касается ноутбуков или внешних дисков), скачок напряжения (может перегореть коммутатор предусилителя – тончайшая электроника, часть блока головок).
Иногда неисправность БМГ может быть следствием некорректного вмешательства в устройство диска. Например, непрофессиональных попыток восстановления при менее серьезных проблемах. Предшественником этой неисправности могут быть как неисправность контроллера (внешней платы электроники), так и битые сектора или залипание головок.
Варианты проблем: неисправность или некорректная работа
Современные диски имеют от одной до четырнадцати рабочих поверхностей пластин, следовательно, и в блоке головок их может быть до четырнадцати штук. Неисправность блока головок HDD, как правило, требует его замены. Если не работают лишь некоторые из головок, проблему обычно диагностируют как некорректную работу механики.
Симптомы неисправного блока головок
При подключении питания вместе со звуком вращения можно услышать характерный ритмичный стук. В некоторых случаях за этим может следовать остановка двигателя. Иногда стука может и не быть, но и звука выходящих в готовность головок при этом тоже не слышно. Диск ведет себя так, как будто у него их вообще нет. Во всех этих случаях компьютер не видит жесткий диск, он не определяется в BIOS и, конечно, не работает.
При некорректной работе механики диск может определиться в BIOS и даже отобразить данные. Иногда ситуация почти полностью повторяет проблему нечитаемых секторов и непрофессионал не может понять, почему данные частично “битые”, не копируются или частично отсутствуют при внешне работающем диске. Все может прояснить тест поверхности. Отличие от бэд-блоков будет в том, что поверхность на таком диске не читается целыми областями от десятков до сотен мегабайт, а не одиночными секторами.
Важно!
Процедура тестирования поверхности диска при указанных неисправностях крайне вредна для данных, так как ухудшает состояние диска. Поэтому вне лаборатории нет смысла в более глубокой диагностике – в обоих случаях следует обращаться к специалистам.
Как нужно восстанавливать данные
Если неисправен блок магнитных головок, то для восстановления данных его нужно заменить на исправный, взятый с точно такого же “донорского” диска.
Все работы должны проводиться в специальных условиях – в ламинарном боксе, который гарантирует при вскрытии защиту гермозоны от пыли, с использованием устройств для съема головок.
Любое неловкое движение, неправильное извлечение или некорректная установка блока головок приведет к немедленному запилам на поверхности пластин и безвозвратной потере данных.
Этапы работ
При некорректной работе механики
Посредством комплекса PC-3000Express+DataExtractor – после корректного “старта” диска и “отключения” проблемных головок – специалист считает все содержимое поверхностей, которое можно получить исправными “родными” головками диска. В зависимости от конкретной модели диска это могут быть участки от десятков до сотен мегабайт, располагающихся подряд.
Общий процент считанного пространства будет зависеть от того, сколько всего работающих поверхностей у этого диска и сколько из них было считано. Может быть восстановлена значительная часть фотоархива или пользовательских данных: документы MS-Office, чертежи, проекты, небольшие архивы.
Скорей всего, будут повреждены или совсем не восстановятся крупные файлы, такие как большие базы данных, видео, виртуальные машины, шифрованные контейнеры, наборы связанных таблиц, например, 1С 7-й версии. Если результат, полученный на этом этапе, не устраивает, то для его улучшения (как и при неисправности БМГ) необходимо пройти следующие два этапа – замена блока магнитных головок и считывание недостающих рабочих поверхностей пластин.
Если БМГ неисправен
- Его заменяют на исправный в условиях, описанных выше. При этом специалист должен произвести процедуру так называемого “приживления” головок и в результате получить доступ к служебной микропрограмме диска. При необходимости произвести целый комплекс мер для “старта” диска и получения доступа к его пользовательской зоне.
- Производят чтение содержимого пользовательской зоны посредством DataExtractor, подбирая оптимальный режим. Диск с “неродными” головками требует особого подхода и специальных средств для чтения. Именно это и обеспечивает профессиональное использование программно-аппаратного комплекса.
К сожалению, этот этап работ может занимать непредсказуемо долгое время. В таких случаях исполнителям, как и заказчикам, остается только запастись терпением. Повлиять на скорость выполнения работ может точное знание приоритетов – путей к самым ценным данным, ради которых затевалось восстановление.
Комбинированные проблемы
- БМГ может выйти из строя одновременно с внешней платой электроники
- Неисправность БМГ может быть следствием большого количества нечитаемых секторов, и наоборот
- Плохая “приживаемость” донорских головок может стать причиной нечитаемых секторов
- Головки могут быть повреждены при их залипании вследствие удара или в результате некорректного устранения этой проблемы
- Неисправность головок очень часто приводит к повреждению поверхности пластин (запилам)
PC-3000Express+DataExtractor можно сравнить с необходимым периодом реабилитации – нахождения под системой жизнеобеспечения. Конечно, и на этом этапе важны и оснащение реанимации, и профессионализм персонала.
Никогда не пробуйте проводить хирургические операции на жестких дисках в домашних условиях, не обладая соответствующим опытом.
Источник https://miradmin.ru/hdd-repair/
Источник http://www.mirpu.ru/hdd/72/173—hdd.html
Источник https://www.datarc.ru/articles/hdd/zamena-bloka-magnitnyh-golovok.html